
Math 2013: Lab 01
Project: The Geometry of Euclidean Four-Space 1

Congratulations! You have just obtained a contract as architect of a four-dimensional office. In order to figure
out how to arrange the furniture, where to put the closets, etc. you naturally will have to explore the geometry of
four-dimensional space. We treat this in a fashion analagous to what we have in two and three dimensions and in
order to answer the the questions you should use your knowledge of R2 and R3. The main difference is that there
are three-dimensional “flat” objects which are unbounded, and which do not fill the whole space. These are called
hyperplanes.

1. (a) Find the general equation of a hyperplane in both vector form and in Cartisean (or general) form. (Hint:
look at the corresponding equations for planes in three dimensions.)

(b) Give an example of a pair of parallel hyperplanes, one of which goes through the origin.

2. (a) Intuitively, if two hyperplanes intersect, they should intersect in a plane. Use this intuition, and the analogy
of two planes intersecting in a line, to find various forms of the equation of a plane in 4-space.

(b) Give examples of: a pair of planes which intersect in a line, a pair of planes which do not intersect and
are parallel, a pair of planes which intersect at only one point, and a pair of skew planes which do not
intersect and are not parallel.

(c) Just as we can have coplanar lines in 3-space, we can have planes which lie in the same hyperplane in 4-space.
Give an example, and devise a test which allows you to tell whether a pair of planes is co-hyperplanar.

3. (a) Under what circumstances do four points determine a hyperplane? (Hint: they cannot be colinear, for one
thing.)

(b) A hypersphere is the set of all points in four-space equidistant from a given point. Write the equation of
the hypersphere centered at (0, 0, 0, 0) with radius 3, assuming the usual distance formula.

4. (a) Let R be the region in 4-space which meets the following conditions: for each point in R, the coordinates
are alway non-negative, and the coordinates sum to 1. Find the hypervolume of the region R. (Hint: the
analogous problem in 2-space is to find the area of the region with x ≥ 0, y ≥ 0, and x+ y = 1.)

(b) Show that the hypervolume of a hypersphere of radius r is
1
2
π2r4.

Bonus:

1. The office itself will be a right hyper-parallelopiped, that is, a hyperbox. This is a bounded chunk of 4-space
with “walls” consisting of hyperplanes meeting at right angles. Give an expression for the hypervolume of a
general hyperbox. How many hyperplane “walls” are there? How many ordinary chalk boards do you need to
put one on each plane along where the hyperwalls intersect?

2. At the last minute, your shipment of hyperlights is held up by an environmental impact assessment, and you are
stuck with only ordinary three-dimensional lights (which you can think of as small spheres emitting light is a
3-dimensional sphere around each of them). How many will you need to light the office, assuming an open plan
(that is, no walls)? How would you write the equation of an ordinary sphere centered at (0, 0, 0, 0) with radius
3?

1With the exception of question 4 and the question about planes intersecting at a single point, this project is taken from the course
Mathematics 2023 given at Acadia University in 1992.



Math 2013: Lab 02
Project: Kepler’s Laws 2

Johannes Kepler stated the following three laws of planetary motion on the basis of masses of data on the positions
of planets at various times.

1. A planet revolves around the sun in an elliptical orbit with the sun at one focus.

2. The line joining the sun to a planet sweeps out equal areas in equal times.

3. The square of the period of revolution of a planet is proportional to the cube of the length of the major axis
of its orbit.

Kepler formulated these laws because they fitted the astronomical data. He was not able to see why they were
true or how they related to each other. But Sir Isaac Newton, in his Principia Mathematica of 1687, showed how
to deduce Kepler’s three laws from two of Newton’s own laws, the Second Law of Motion (~F = m~a) and the Law of

Universal Gravitation
(
~F = −GMm

r3
~r

)
. In Section 13.4 we proved Kepler’s First Law using the calculus of vector

functions. In this project we guide you through the proofs of Kepler’s Second and Third Laws and explore some of
their consequences.

1. Use the following steps to prove Kepler’s Second Law. The notation is the same as in the proof of the First
Law in Section 13.4. In particular, use polar coordinates so that ~r = (r cos θ)~i+ (r sin θ)~j, and ~h = ~r× ~v, with
h = |~h|.

(a) Show that ~h = r2
dθ

dt
~k.

(b) Deduce that r2
dθ

dt
= h.

(c) If A = A(t) is the area swept out by the radius vector ~r = ~r(t) in the time interval [t0, t], show that

dA

dt
=

1
2
r2
dθ

dt
.

(d) Deduce that
dA

dt
=

1
2
h = constant.

This says that the rate at which A is swept out is constant and proves Kepler’s Second Law.

2. Let T be the period of a planet about the sun; that is, T is the time required for it to travel once around its
elliptical orbit. Suppose that the lengths of the major and minor axes of the ellipse are 2a and 2b respectively.

(a) Use part (1d) to show that T = 2πab/h.

(b) Show that
h2

GM
= ed =

b2

a
.

(c) Use parts (2a) and (2b) to show that T 2 = 4π2

GM a3.

This proves Kepler’s Third Law. (Notice that the proportionality constant 4π2/(GM) is independent of the
planet.)

3. The period of the earth’s orbit is approximately 365.25 days. Use this fact and Kepler’s Third Law to find the
length of the major axis of the earth’s orbit. You will need the mass of the sun, M = 1.99× 1030 kg, and the
gravitational constant, G = 6.67× 10−11Nm2/kg2.

4. It is possible to place a satellite into orbit about the earth so that it remains fixed above a given location on
the equator. Compute the altitude that is needed for such a satellite. The earth’s mass is 5.98 × 1024 kg; its
radius is 6.37× 106 m. (This orbit is called the Clarke Geosynchronous Orbit after Arthur C. Clarke, who first
proposed the idea in 1945. The first such satellite, Syncom 2, was launched in July 1963.)

2This project is taken from Stewart, pp. 848-9.



Math 2013: Lab 03
Project: Vector Calculus in Curvilinear Coordinates

As we have seen previously, there are times when a change of coordinates simplifies the problem nicely. We have
used polar coordinates to integrate over planar regions and cylindrical and spherical coordinates for integration over
volumes.

This term we have studied the fundamental theorem for line integrals, which involves integration of the gradient of
a function, and we will be considering integration of the divergence of vector fields. In this project we will investigate
the gradient and divergence operators in cylindrical and in spherical coordinates, and then calculate the Laplacian
in these coordinate systems.

1. Recall, in Cartesian coordinates, we have

∇f =
∂f

∂x
~i+

∂f

∂y
~j +

∂f

∂z
~k. (1)

To compute the gradient in the various coordinate systems, we will first re-write the partial derivatives in terms
of the new variables.

(a) In cylindrical coordinates, r, θ, and z, use the chain rule to re-write
∂f

∂x
,
∂f

∂y
, and

∂f

∂z
.

(b) Substitute these new expressions into (1) and group the partial derivatives
∂f

∂r
,
∂f

∂θ
, and

∂f

∂z
.

(c) If we define three new unit vectors,

~er = cos θ~i+ sin θ~j

~eθ = − sin θ~i+ cos θ~j

~ez = ~k

we can conclude that

∇f =
∂f

∂r
~er +

1
r

∂f

∂θ
~eθ +

∂f

∂z
~ez (2)

in cylindrical coordinates.

2. Use the above method to show that the gradient in spherical coordinates is

∇f =
∂f

∂r
~er +

1
r sinφ

∂f

∂θ
~eθ +

1
r

∂f

∂φ
~eφ (3)

with appropriate choices for ~er, ~eθ, and ~eφ.

3. Let ~F = P~er +Q~eθ +R~ez be a vector field in cylindrical coordinates. We are told that the divergence of ~F is

∇ · ~F =
1
r

∂

∂r
(rP ) +

1
r

∂Q

∂θ
+
∂R

∂z
. (4)

Use (2) and (4) to show

∇2f =
∂2f

∂r2
+

1
r

∂f

∂r
+

1
r2
∂2f

∂θ2
+
∂2f

∂z2
.

4. Let ~F = P~er +Q~eθ +R~eφ be a vector field in spherical coordinates. We are told that the divergence of ~F is

∇ · ~F =
1
r2

∂

∂r

(
r2P

)
+

1
r sinφ

∂Q

∂θ
+

1
r sinφ

∂

∂φ
(R sinφ) . (5)

Use (3) and (5) to show

∇2f =
∂2f

∂r2
+

2
r

∂f

∂r
+

1
r2 sin2 φ

∂2f

∂θ2
+

1
r2
∂2f

∂φ2
+

1
r2 tanφ

∂f

∂φ
.



Math 2013: Lab 04
Project: Exterior Calculus in R3

For this project we are going to investigate differential forms. Differential forms, according to H. Flanders “are the
things which occur under integral signs.” 3 For example, a line integral,

∫
C
Pdx +Qdy +Rdz gives the 1-form µ =

Pdx+Qdy+Rdz , and a surface integral,
∫∫
S
Adxdy+Bdydz+Cdzdx gives the 2-form ν = Adxdy+Bdydz+Cdzdx,

while a volume integral,
∫∫∫

E
Fdxdydz give the 3-form ω = Fdxdydz . We define 0-forms to be functions.

There are three main algebraic operations on the space of differential forms: scalar multiplication and addition
which are performed in the intuitive manner (ie. component-wise), and the exterior (or wedge) product, which we
will define later. There is also an exterior derivative operator, denoted d, and another operator, called the Hodge
star, denoted ∗. With these we will describe an exterior calculus.

1. Let α = xdx + yzdz and β = y2dx + yzdy − xdz . Compute xα and 2α+ zβ.

2. The exterior product of dxi and dxj is dxi ∧ dxj and it obeys the rule dxi ∧ dxj + dxj ∧ dxi = 0. (ie. it is
anti-commutative) Also, we note that (adxi) ∧ (bdxj) = (ab)dxi ∧ dxj . The wedge product is distributive:
α ∧ (β + γ) = α ∧ β + α ∧ γ, and it is associative: α ∧ (β ∧ γ) = (α ∧ β) ∧ γ.

(a) For α and β as in question 1, compute α ∧ β, α ∧ α, and β ∧ (α ∧ β).

(b) Let ω = Pdx+Qdy+Rdz and ν = Adx+Bdy+Cdz . Compute ω∧ν and collect the terms in the following
order: dy ∧ dz, dz ∧ dx, and dx ∧ dy . Compare the result to the cross-product: 〈P,Q,R〉 × 〈A,B,C〉.

3. In R3, the space of 0-forms and the space of 3-forms can be thought of as having dimension 1, while the space of
1-forms and the space of 2-forms can be said to have dimension 3. Thus there is a linear mapping from 0-forms
to 3-forms, and from 1-forms to 2-forms. This mapping is called the Hodge star isomorphism, and is defined as
follows:

∗1 = dx ∧ dy ∧ dz
∗dx = dy ∧ dz
∗dy = dz ∧ dx
∗dz = dx ∧ dy

Note, that for R3, ∗ ∗ ω = ω, so this defines the isomorphism for 2- and 3-forms.

(a) For α and β as is question 1, compute ∗α, α ∧ ∗α, and ∗(β ∧ ∗β).

(b) Let ω and ν be as is question 2 (b). Compute ∗(ω ∧ ν) and ∗(ω ∧ ∗ν), and identify these with the cross
product and the dot product of vectors.

4. The exterior derivative, d, takes p-forms to (p+ 1) forms, and is defined for R3 as follows:

df =
3∑
i=1

(
∂f

∂xi

)
dxi

dω =
3∑
i=1

(
∂ω

∂xi

)
∧ dxi

CORRECTION : dω =
3∑
i=1

dxi ∧
(
∂ω

∂xi

)
where ∂ω/∂xi acts on the coefficients of the terms in ω. All solutions are for the uncorrected definition.

(a) For α and β as is question 1, compute dα, dβ, and d(α ∧ β).

(b) If a 0-form f has continuous second order partial derivatives, prove: d2f = d(df) = 0.

(c) For a 0-form f , a 1-form ω, and a 2-form ν, compute df , ∗(dω), and ∗(dν) and identify these with the
operators from vector calculus: gradient, divergence, and curl.

3Harley Flanders, Differential Forms with Applications to the Physical Sciences, p. 1



Math 2013: Lab 05
Project: Integral Theorems

Note: for this project, you may assume that all the appropriate conditions for the relevant theorems apply.

1. Use the vector form of Green’s Theorem,
∮
C

~F · ~nds =
∫∫

D

∇ · ~FdA, to prove:

∫∫
D

f∇2gdA =
∮
C

f∇g · ~nds −
∫∫

D

∇f · ∇gdA, (6)

where D ⊂ R2 and C = ∂D, with a positive orientation.

2. Use (6) to prove ∫∫
D

(
f∇2g − g∇2f

)
dA =

∮
C

(f∇g − g∇f) · ~nds. (7)

3. A function g is call harmonic on D if ∇2g = 0 on D. If g is harmonic on D, prove
∮
∂D

D~ngds = 0, recalling

that D~u indicates the directional derivative.

4. If f is harmonic on D a simple region in R2, show that the line integral
∫
C

fydx − fxdy is independent of path

in D.

5. Prove that ∫∫
S

f~ndS =
∫∫∫

E

∇fdV

where the integration is done component-wise.

6. A solid occupies a region E with surface S and is immersed in a liquid with constant density ρ. We set up
a coordinate system so that the xy-plane coincides with the surface of the liquid and positive values of z are
measured downward into the liquid. Then the pressure at depth z is p = ρgz, where g is the acceleration due to
gravity. The total buoyant force on the solid due to the pressure distribution is given by

~F = −
∫∫

S

p~ndS

where ~n is the outward normal. Show that ~F = −W~k, where W is the weight of the liquid displaced by the
solid. The result is Archimedes’ principle: The buoyant force on an object equals the weight of the displaced
liquid.



Math 2013: Lab 06
Project: Series Solutions of Ordinary Differential Equations

Sometimes solutions to differential equations cannot be expressed in terms of “elementary functions” (that is, in
terms of polynomials, exponential, trigonometric, logarithmic, etc. functions). But these differential equations can
still define functions. One method of solving these equations is to assume the solution have the form:

y = f(x) =
∞∑
n=0

cnx
n = c0 + c1x+ c2x

2 + . . . , (8)

where the coefficients are determined by the differential equation.

1. Consider the equation, y′ − y = 0. We know the solution is y = Aex. Use (8) to find the series expansion of ex.

(a) For (8), find y′ by differentiating term by term.

(b) Write y′ − y and collect like powers of x and find a formula for the coefficient of xn in this expression.

(c) Since y′ − y = 0, all the coefficients must zero. Find a recursion relation for the nth coefficient. (See for
example equation 6, p. 1134).

(d) Find a formula for cn in terms of c0, and substitute this back into (8).

2. The equation x2y′′ + xy′ + x2y = 0 is known as Bessel’s equation of order 0. Use the following steps to find a
series solution of this equation, with coefficients in terms of c0 and c1.

(a) From (8) find the series for y′ and y′′.

(b) Find x2y′′, xy′, and x2y by multiplying each term in the respective series by either x2 or x, depending on
the situation.

(c) Write out explicitly the first five non-zero terms of each series: x2y′′, xy′, and x2y.

(d) Find a recursive relation for the coefficients of xn.

(e) Consider even and odd coefficients separately, and find a formula for c2n in terms of c0 and for c2n+1 in
terms of c1.

(f) Write y = c0J0(x) + c1Y0(x). The functions J0 and Y0 are called Bessel function of the first and second
kind, of order 0. Give the series expression for J0(x) and Y0(x).

You may find useful the following formula:

1 · 2 · 3 · · ·n = n!
2 · 4 · 6 · · · 2n = 2nn!

1 · 3 · 5 · · · (2n− 1) =
(2n)!

2 · 4 · 6 · · · 2n
=

(2n)!
2nn!



Math 2013: Lab 07
Project: Introduction to Analysis

Material from Appendix A of the textbook may be of use for this project.

1. Prove: If {an}∞n=1 converges to A and to B, then A = B. (Hint: Try proof by contradiction. Assume A 6= B
and show there is an inconsistent result.)

2. Prove: If {an}∞n=1 converges to A, then {an}∞n=1 is bounded. (Hint: Let ε be a fixed number, like ε = 1.)

3. Prove: If {an}∞n=1 converges to A and {bn}∞n=1 converges to B, then {an + bn}∞n=1 converges to A+B.

4. A sequence {an}∞n=1 is Cauchy if and only if for each ε > 0 there is a positive integer N such that if n,m ≥ N
then |an − am| < ε. Prove: Every convergent sequence is Cauchy. (Hint: let ε > 0 and consider ε′ = ε/2 > 0 for
the usual definition of convergence.)

5. Prove: If c > 1, then { n
√
c}∞n=1 converges to 1. (Hint: Show the sequence is decreasing and that it is bounded

below by 0.) For additional work, prove: if 0 < c < 1 then { n
√
c}∞n=1 converges to 1.



Math 2013: Lab 08
Project: Introduction to Fourier Series

1. Consider the following differential equation: −X ′′(x) = λX(x), where λ ∈ R.

(a) Let λ = β2, where β > 0. Write the general solution of the differential equation. Use A and B for the
arbitrary coefficients.

(b) In the above solution, there are three unknowns: A,B, and β. Use the boundary conditionsX(0) = X(π) = 0
to solve for two of the unknowns. One of the coefficients, A or B, will be left unknown.

(c) From the above, we have limited the values for λ. These will form a sequence. Write a formula for the nth

term, denoted λn.

(d) Also from above, for each λn, there is a function Xn(x). In this case the arbitrary coefficient may be assumed
to be 1. Find a formula for Xn(x). The numbers λn are called eigenvalues, and the functions Xn(x) are
called eigenfunctions.

2. The context for the above question comes from partial differential equations (PDEs). From work done in
PDEs, we know that for these problems, solutions may be summed. So we will now consider functions f(x) =∑∞
n=1AnXn(x).

(a) Let n,m ∈ N. Prove:
∫ π
0

sinnx sinmxdx = 0 if m 6= n, and
∫ π
0

sin2 nxdx = π
2 .

(b) If f(x) =
∑∞
n=1An sinnx, prove that An = 2

π

∫ π
0
f(x) sinnxdx. These coefficients are called Fourier coeffi-

cients, and the series is called the Fourier (sine) series for f(x) on (0, π).

(c) Find the Fourier coefficients for f(x) = 1, and write the Fourier series for f(x). Note: If x = π
2 , we get a

“nice” series whose sum is π.

3. Consider the following differential equation: −X ′′(x) = λX(x), where λ ∈ R, with the boundary conditions
X(0) = X(π) = 0. Assume that λ = −β2 where β > 0, and show that there cannot be any eigenfunctions in this
case. (Note: X(x) = 0 is not allowed to be an eigenfunction.)



Math 2013: Lab 09
Project: Problems Plus – Sequences and Series

1. p. 761, # 3

2. p. 761, # 5

3. p. 762, # 13

4. p. 762, # 15

5. p. 763, # 16



Math 2013: Lab 10
Project: Fixed Points in Population Growth

Population models sometimes use the method of difference equations to predict future population growth. This
method uses discrete time steps, and at each interval, the population depends on the previous population size, that
is, Pn+1 = f(Pn) for some function f . In this lab, we will explore fixed points in population models. These are
population sizes that stay unchanged as time progresses. Mathematically, we are looking for population sizes, P ,
such that P = f(P ).

1. For this lab, we will consider the model f(x) = rx(1− x), where r is a positive real number. We will later show
that 0 ≤ r ≤ 4.

(a) Show that this model has two fixed point (x = f(x)) when r > 1. One fixed point is x = 0, the other is a
function of r. We will denote this fixed point by x∗(r), or just x∗.

(b) Graph on the same graph, y = x and y = f(x). Label the fixed points.

(c) Linearize (find the equation of the tangent line) the function f at the fixed point x∗. Use the point-slope form.
Use this equation to approximate f(Pn). Recall that f(Pn) = Pn+1 and f(x∗) = x∗. Define un = Pn − x∗.
Show that the linearization can be written as un+1 = f ′(x∗)un. What happens if |f ′(x∗)| > 1? |f ′(x∗)| < 1?
Find the value(s) r such that f ′(x∗(r)) = −1.

(d) Compute (using OpenOffice.org Calc, or some other spreadsheet program, like Gnumeric) the first 100
iterates (P1, P2, . . . , P100) with

i. r = 1.2 and P0 = 0.33
ii. r = 2.5 and P0 = 0.33

iii. r = 3.2 and P0 = 0.67
iv. r = 3.5 and P0 = 0.67
Plot these four sequences (as an X-Y scatter plot), letting n be the horizontal axis.

2. A period two fixed point is a solution of the equation f(f(x)) = x.

(a) Explain why the equation f(x) = f−1(x) could be used to find period two fixed points. Using the same f as
is the first question, for r value of 1, 2, and 3.5, plot f(x) and f−1(x) on the same axis using the reflection
method for the inverse function. Note the intersection of these two graphs.

(b) Solve analytically for the period two fixed points. This requires you to factor a fourth degree polynomial.
To aid in this, note that a fixed point is also a period two fixed point. For what values of r are there more
than two period two fixed points?

(c) What would be an interpretation of a period two fixed point?

3. It was stated at the beginning of the lab that 0 ≤ r ≤ 4. Show that if r > 4, then the maximum of f(x) is
greater than 1. This would mean that the iterations could take us outside the “domain” of the model.


