Math 317: Complex Analysis Assignment 1

Due September 19, 2014, by 12:00pm (noon) in Johnson 117A

- 1. Let z_1, z_2, z_3 be three arbitrary complex numbers. Which of the following equations are true in general? Give reasons. If an equation is false in general, give an example to demonstrate.
 - (a) $\overline{z_1}\overline{z_2}\overline{z_3} = \overline{z_1}\overline{z_2}\overline{z_3}$.
 - (b) $\overline{i(z_1 + z_2 + z_3)} = i(\overline{z_1} + \overline{z_2} + \overline{z_3}).$
 - (c) Re $(z_1\overline{z_2}z_3)$ = Re $(\overline{z_1}z_2\overline{z_3})$.
 - (d) Im $(z_1\overline{z_2}z_3)$ = Im $(\overline{z_1}z_2\overline{z_3})$.
 - (e) Re $(z_1\overline{z_2}z_3)$ = Im $(i\overline{z_1}z_2\overline{z_3})$.
- 2. Sketch the solution to |z+1+i| < 3.
- 3. Sketch the set $\{z \mid \text{Re } z \leq -1 \text{ or Im } z \geq 0\}$ in the complex plane.
- 4. Find all the solutions to $z^6 + 64 = 0$. Plot the solutions in the complex plane.
- 5. Let w be an n^{th} root of unity, i.e., $w^n = 1$, and let $w \neq 1$. Show that

$$1 + w + w^2 + w^3 + \dots + w^{n-1} = 0$$

- 6. Let $n \geq 2$ be an integer. Show that the sum of all solutions of $z^n 1 = 0$ is zero.
- 7. Show that the roots of a polynomial with real coefficients are either real, or occur in complex conjugate pairs.
- 8. Prove that $|\text{Re } z| + |\text{Im } z| \le \sqrt{2} |z|$ for any $z \in \mathbb{C}$.