Math 317: Complex Analysis Assignment 3

Due October 17, 2014 by 12:00pm (noon) in Johnson 117A

1. If f and g are both analytic functions, prove $\frac{d}{dz}(fg) = \frac{df}{dz}g + f\frac{dg}{dz}$, using the limit definition. You do not need to use the $\epsilon - \delta$ method for limits. (Unrelated side note: the usual quotient rule also holds.)

2. Solve, and sketch the solution in the complex plane.

(a) Im
$$(z^2) \le 2$$

(b)
$$\left| \frac{z+i}{z-1} \right| = 1.$$

3. Find all the solutions of $e^{2iz} = 3$.

4. Find the real and imaginary parts of $f(z) = \cos(z+1+i)$. Verify that both are harmonic functions.

5. Find all solutions to $\cos z = 1 + i$.

6. Find, in the form x + iy, all values of:

(a)
$$(1+i)^{1+i}$$

(b)
$$\ln(\sqrt{2} - \sqrt{2}i)$$

(c) the principal value of $(\sqrt{3} + i)^i$

7. Evaluate $\oint_C \left(z + \frac{1}{z}\right) dz$ where C is the unit circle travelled clockwise.

8. Evaluate $\oint_C \operatorname{Re} z dz$ where C is the unit circle travelled counterclockwise.

9. Evaluate $\int_C (z^2 + 3z + 1)dz$ where C is the straight line from -1 - i to 3 + 3i.

10. Find $\oint_C \frac{3z-1}{z^2-4} dz$ where C is the circle

(a)
$$|z-2|=2$$

(b)
$$|z+2| = 2$$
 and

(c)
$$|z| = 6$$
,

all travelled counterclockwise.

11. Find $\int_{-3i}^{3i} \cos 3z dz$.

12. Evaluate $\int_C \frac{z+2}{z^2+1} dz$ where C is

(a) the path from -3 to 3 along the real axis,

(b) the upper semi-circle from -3 to 3,

(c) the lower semi-circle from -3 to 3.