Math 317: Complex Analysis
Assignment 4

Due October 31, 2014 by 12:00pm (noon) in Johnson 117A

1. Use the Cauchy Integral Formula to evaluate the following integrals:
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(a) 7{ c 1dz, where C is the circle |z — 1| = 1 travelled clockwise,
cc—
h
(b) ]é Ldz, where C is the circle |z — 3| = 1 travelled clockwise,
c(z=2)(z-1)

z
(c) f %dz, where C' is any simple closed curve surrounding z = 1 travelled counterclockwise.
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2. C denote the boundary of the square whose sides lie along the lines x = +2 and y = 42, where C is described
in the counterclockwise sense. Evaluate each of the following integrals:
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Prove the Cauchy Integral Formula for the case of n = 2, that is, prove, for suitable conditions on f and C,
that ) 1(2)
1 <
=— ¢ ——=dz.
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Also, state the conditions imposed on f and C. (Note: you may assume, if necessary, the case of n = 1 and
n=0.)

4. Find the Taylor series for f(z) =

about
2z —1
(a) z=0
(b) z=1
and state where they are convergent.
1
. Find the first 3 non-zero terms in the Taylor series for f(z) = ———= about z = 2.
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