Math 317: Complex Analysis Assignment 5

Due (Monday) November 17, 2014 by 12:00pm (noon) in Johnson 117A

- 1. Find all the Laurent series for $f(z) = \frac{1}{z^2(z-3)}$ with centre z=0 and state where they are convergent.
- 2. Find all the Laurent series for $f(z) = \frac{1}{z^2} + 1$ with centre z = -i and state where they are convergent.
- 3. (a) Find the first 3 non-zero terms in the Laurent series for $f(z) = \frac{e^z}{\sin z}$ with centre z = 0 valid near z = 0.
 - (b) Use the answer in (a) to find $\oint_C \frac{e^z}{\sin z} dz$ where C is |z| = 1 travelled counterclockwise.
- 4. Find all singularities of the given functions. Determine if the singularity is an essential singularity or a pole and, if a pole, determine its order. Also, find the residue at each singularity.
 - (a) $z^2 e^{1/z}$.
 - (b) $\frac{3-2z}{z^3+3z^2}$.
 - (c) $z^{-5}\cos z$.
 - (d) $\frac{2}{1 e^z}$.
- 5. Find $\oint_C \frac{z+1}{z^4-2z^3}$ where C is |z|=3 traveled clockwise.
- 6. Integrate $\frac{3z^2+2z-4}{z^3-4z}$ around the following paths C in the counterclockwise sense:
 - (a) |z| = 1
 - (b) |z| = 3
 - (c) |z 4| = 1
- 7. Evaluate the following integrals where ${\cal C}$ is the unit circle traveled counterclockwise:
 - (a) $\oint_C \frac{z}{4z^2-1}dz$
 - (b) $\oint_C \frac{z+1}{4z^3 z} dz$
 - (c) $\oint_C \frac{z+1}{z^4-2z^3} dz$
 - (d) $\oint_C \frac{\sinh z}{2z i} dz$
 - (e) $\oint_C \frac{e^{z^2}}{\cos \pi z} dz$