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Assignment 1: Due January 27, 2017

2.3: Suppose that V,X, Y are sets with V ⊆ X ⊆ Y and suppose that U is a subset of Y
such that X \ V = X ∩ U . Prove that

V = X ∩ (Y \ U).

Solution: Let x ∈ V . Then x ∈ X, Y since V is a subset of each, and x 6∈ U since
x 6∈ X \V . Therefore x ∈ X and x ∈ Y \U , so x ∈ X∩(Y \U) giving V ⊆ X∩(Y \U).

Let x ∈ X ∩ (Y \ U), then x ∈ X and x 6∈ U , so x 6∈ X ∩ U = X \ V. Thus x ∈ V , so
X ∩ (Y \ U) ⊆ V .

Thus we have equality. �

2.6: Suppose that for some set X and some indexing sets I, J we have U =
⋃
i∈I

Bi1 and

V =
⋃
j∈J

Bj2 where each Bi1, Bj2 is a subset of X. Prove that

U ∩ V =
⋃

(i,j)∈I×J

Bi1 ∩Bj2.

Solution:

x ∈ U ∩ V ⇐⇒ x ∈ U and x ∈ V
⇐⇒ x ∈ Bi1 for some i ∈ I, and x ∈ Bj2 for some j ∈ J
⇐⇒ x ∈ Bi1 ∩Bj2 for some (i, j) ∈ I × J

⇐⇒ x ∈
⋃

(i,j)∈I×J

Bi1 ∩Bj2

�

3.4: Let f : R→ R2 be defined by f(x) = (x, 2x). Describe the following sets:

• f([0, 1])

• f−1([0, 1]× [0, 1])

• f−1(D) where D = {(x, y)|x2 + y2 ≤ 1}.

Solution:

• f([0, 1]) = {(t, 2t)|0 ≤ t ≤ 1} = the line segment joining (0, 0) to (1, 2)



• f−1([0, 1]× [0, 1]) = [0, .5]

• f−1(D) where D = {(x, y)|x2 + y2 ≤ 1}. So f−1(D) = [−1/
√

5, 1/
√

5].

�

3.9: Let f : X → Y be a map and A ⊆ X,C ⊆ Y . Prove that

(a) f(A) ∩ C = f(A ∩ f−1(C))

Solution:

y ∈ f(A) ∩ C ⇐⇒ y ∈ f(A) and y ∈ C
⇐⇒ y = f(a) for some a ∈ A, and y ∈ C
⇐⇒ a ∈ f−1(C) and a ∈ A and y = f(a)

⇐⇒ a ∈ A ∩ f−1(C) and y = f(a)

⇐⇒ y ∈ f(A ∩ f−1(C))

�

(b) If also B ⊆ X and f−1(f(B)) = B then f(A) ∩ f(B) = f(A ∩B).

Solution: Let C = f(B) in part (a), and we have the result. �

4.3: Formulate and prove analogues of Exercises 4.1 and 4.2 for inf.

Solution:

• For 4.1: If ∅ 6= A ⊆ B ⊆ R and B is bounded below, then A is bounded below
and inf A ≥ inf B.
Proof: Since B is bounded below, ∃k ∈ R such that k ≤ x, ∀x ∈ B, and since
A ⊆ B, k ≤ x, ∀x ∈ A. Thus A is bounded below. Next, assume inf A < inf B.
Then ∃a ∈ A such that a < inf B. Since a ∈ A ⊆ B, this means a ≥ inf B. This
is a contradiction, therefore inf A ≥ inf B.

• For 4.2: If A,B are non-empty subsets of R which are bounded below, then A∪B
is bounded below and

inf A ∪B = min{inf A, inf B}

Proof: Let A be bounded below by a and B be bounded below by b. Let
k = min{a, b}. Then k ≤ a ≤ x, ∀x ∈ A and k ≤ b ≤ y, ∀y ∈ B, so k ≤ z, ∀z ∈
A ∪ B. The second part can be shown by letting a = inf A and b = inf B, and if
inf A∪B is greater than that minimum, either the inf A or inf B is violated since
it would be a lower bound on both A and B.
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4.5: Show that there is no rational number q such that q2 = 2.

Solution: Assume q2 = 2 where q =
m

n
where m and n are natural numbers with no

common factors. Then
m2

n2
= 2, or m2 = 2n2. Since m,n are relatively prime, n does

not divide, unless n = 1. We can rule out this case by showing 12 = 1 < 2 and m2 ≥ 4
for all m ≥ 2. Thus 2 divides m2, and this implies 2 divides m. Therefore m = 2k for
some k ∈ N. Put this in above and we have 4k2 = 2n2 or 2k2 = n2. Now either k = 1
(rule out as before), k divides n (this would mean m,n have a common factor of k), or
2 divides n (which means m,n have a common factor of 2). None of these can happen.
This is a contradiction. Therefore, there is no rational number whose square is 2. �

4.8: Prove that between any two distinct real numbers there is an irrational number.

Solution: Let x and y be distinct real numbers with x < y. Then x+
√

2 and y+
√

2
are distinct real numbers. By Corollary 4.7, there exists a rational number, r, such
that x+

√
2 < r < y +

√
2. Then x < r −

√
2 < y. From Exercise 4.5 above, we know

that
√

2 is not rational, and thus r −
√

2 is also not rational. �

4.11: Given a set of r non-negative real numbers {a1, . . . , ar}, let a = max ai. Prove that for
any positive integer n,

an ≤ an1 + · · ·+ anr ≤ ran.

By taking nth roots throughout, deduce that

a ≤ (an1 + · · ·+ anr )1/n ≤ r1/na,

and hence that
lim
n→∞

(an1 + · · ·+ anr )1/n = a.

Solution: Since ai ≥ 0 and a = max ai, we have 0 ≤ ai ≤ a for i = 1, . . . , r, and
a = ak for some k. This means 0 ≤ ani ≤ an as well, since xn is an increasing function
for non-negative x. Thus

an = ank ≤ an1 + · · ·+ ank + · · ·+ anr ≤ an + an + · · ·+ an = ran

Since x1/n is a strictly increasing function, taking the nth root preserves the inequali-
ties. For the last statement, we merely need that limn→∞ r

1/n = 1 for positive integers
r (this is a well-known fact, though it would be good to prove it) and the Squeeze
Theorem for sequences. �
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Assignment 2: Due February 10, 2017

1. For x = (−2, 1) and y = (3, 4), compute the distance from x to y in each of the
following metrics:

(a) The discrete metric.
Solution: Since x 6= y, the distance using the discrete metric is 1. �

(b) d1, d2, and d∞ as described in Example 5.7
Solution:

d1(x, y) = |−2− 3|+ |1− 4| = 5 + 3 = 8

d2(x, y) =
√

(−2− 3)2 + (1− 4)2 =
√

25 + 9 =
√

34

d∞(x, y) = max{|−2− 3| , |1− 4|} = max{5, 3} = 5

�

2. Describe pictorially (on a graph) the set of points x ∈ R2 whose distance from (4, 2) is
less than or equal to 1 with respect to the following metrics:

(a) The discrete metric.

(b) d1, d2, and d∞ as described in Example 5.7

Solution:

Bdiscrete
1 ((4, 2)) = R2:

−1 1 2 3 4 5

1

2

3

4

5

x

y

Bd1
1 ((4, 2)):

−1 1 2 3 4 5

1

2

3

4

5

x

y
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Bd2
1 ((4, 2)):

−1 1 2 3 4 5

1

2

3

4

5

x

y

Bd∞
1 ((4, 2)):

−1 1 2 3 4 5

1

2

3

4

5

x

y

�

3. From geometry, a parabola is the collection of points which are equal distance from
a fixed point and a given line. Sketch, with justification, the parabola defined by the
point (0, 1) and the line y = −1 using the metric d1 defined in Example 5.7.

Solution: The parabola determined by the given point and line is the graph in blue.
First, the equation which generates this graph is |x|+ |y − 1| = |y + 1|, as can be seen
from equating the two distances. In other words, |x| = |y + 1| − |y − 1|. Now clearly,
y + 1 > y − 1. If y − 1 ≥ 0 then so is y + 1, and so |x| = (y + 1) − (y − 1) = 2. thus
for y ≥ 1, we have |x| = 2. This gives the two vertical lines in the graph.

Now if y < 0, we see that |y − 1| ≥ |y + 1|. This would mean for y < 0 we have |x| < 0,
which cannot happen.

This leaves 0 ≤ y < 1. In the case |y − 1| = 1− y and so |x| = (y + 1)− (1− y) = 2y,

which gives the two slanted lines from the origin, in the graph.

−2 −1 1 2
−1

1

2

x

y
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4. Prove that d(x, y) = |ex − ey| defines a metric on R. Describe the set of points in R
whose distance from 1 is at most 5 under this metric.

Solution:

M1: Since d(x, y) = |ex − ey| we always have the value non-negative. If d(x, y) = 0,
then we must have ex = ey, and since the exponential function is injective, x = y.

M2: d(x, y) = |ex − ey| = |ey − ex| = d(y, x).

M3: d(x, z) = |ex − ez| = |ex − ey + ey − ez| ≤ |ex − ey| + |ey − ez| = d(x, y) + d(y, z)
using the triangle inequality for absolute values.

Find x such that d(x, 1) ≤ 5, so |ex − e| ≤ 5 which means −5 + e ≤ ex ≤ 5 + e. Since
−5 + e < 0, there will be no lower bound on x, but there will be an upper bound of
ln(5 + e). So, x ∈ (−∞, ln(5 + e)]. �

5. Let X be a metric space with metric d. Show that D : X ×X → R defined by

D(x, y) =
d(x, y)

1 + d(x, y)

is also a metric on X. Also show that X is a bounded set in the metric space (X,D).

Solution:

M1: Since d(x, y) ≥ 0, and 1+d(x, y) ≥ 1, we must haveD(x, y) ≥ 0. Also, D(x, y) = 0
only when d(x, y) = 0 which means x = y since d is a metric.

M2: Since d(x, y) = d(y, x), we also have symmetry for D.

M3: First, we will show that f(x) =
x

1 + x
is increasing for all x 6= −1. The first

derivative, f ′(x) =
1

(1 + x)2
is strictly positive where it is defined, and so f is

increasing on its domain.
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Now,

D(x, z) =
d(x, z)

1 + d(x, z)

≤ d(x, y) + d(y, z)

1 + d(x, y) + d(y, z)
since d is a metric

=
d(x, y)

1 + d(x, y) + d(y, z)
+

d(y, z)

1 + d(x, y) + d(y, z)

≤ d(x, y)

1 + d(x, y)
+

d(y, z)

1 + d(y, z)

since the denominator is smaller in each fraction

= D(x, y) +D(y, z)

We have show that the function f(x) =
x

1 + x
is always increasing, and it is clear, after

applying l’Hôpital’s Rule, that |f(x)| ≤ 1. This means D(x, y) ≤ 1 for all x, y ∈ X,
and so X is bounded. �

5.2: Given points x, y, z, t in a metric space (X, d), prove that

|d(x, y)− d(z, t)| ≤ d(x, z) + d(y, t)

Solution:

|d(x, y)− d(z, t)| = |d(x, y)− d(y, z) + d(y, z)− d(z, t)|
≤ |d(x, y)− d(y, z)|+ |d(y, z)− d(z, t)|
≤ d(x, z) + d(y, t) Using exercise 5.1

�

5.5: Suppose that x, y are distinct points in a metric space (X, d) and let ε = d(x, y)/2.
Prove that Bε(x) and Bε(y) are disjoint.

Solution: Assume that Bε(x) and Bε(y) are not disjoint. Then there is z ∈ Bε(x) ∩
Bε(y). Thus

d(x, y) ≤ d(x, z) + d(z, y) < ε+ ε = 2ε = d(x, y).

However, d(x, y) 6< d(x, y). Therefore there cannot be an element in the intersection,
and so the sets are disjoint. �

5.18: Suppose that in a metric space X we have Bs(x) = Br(y) for some x, y ∈ X and some
positive real numbers r, s. Is x = y? Is r = s?
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Solution: Let X = R with the discrete metric. Then B2(5) = R = Bπ(
√

2). Thus it
is not required that r = s or that x = y. �

6. Let (X, d) be a metric space, and let P be the set of all non-empty subsets of X, that
is P = {A|A ⊆ X,A 6= ∅}. We can define the distance between two elements of P by
D(A,B) = inf{d(a, b)|a ∈ A, b ∈ B}. Then (P,D) is not a metric space. In what ways
does it fail? Give an example of each type of failure.

Solution:

M1: Since d is a metric, d(a, b) ≥ 0, and so D(A,B) = inf {d(a, b)|a ∈ A, b ∈ B} ≥ 0.
However, D(A,B) = 0 does not imply A = B. Consider A = [−1, 0] and B = [0, 1]
in the usual metric for R. A 6= B but D(A,B) = 0.

M2: D(A,B) = inf {d(a, b)|a ∈ A, b ∈ B} = inf {d(b, a)|a ∈ A, b ∈ B} = D(B,A).

M3: The triangle inequality does not always hold. For example, take A and B as
above, and let C = [1, 2]. Then D(A,C) = 1 > D(A,B) +D(B,C) = 0 + 0.

�

7. Let A = {(x, y) ∈ R2|0 ≤ x, y}. Determine whether A is open, closed, or neither with
respect to: the discrete metric, d1, d2 and d∞.

Solution: Let B = X \ A = {(x, y) ∈ R2|x < 0 or y < 0}. In each case we need to
consider whether A and/or B is open with respect to the metric.

For the discrete metric, we know from examples 5.35 and 6.2 that any set in a discrete
metric space is both open and closed.

For metrics d1, d2, d∞ we will show that A is closed. Let (x, y) ∈ B, then at least
one of x or y is negative. Without loss of generality, assume it is x. Claim that
B−x

2
((x, y)) ⊆ B. We will show that for (a, b) ∈ B−x

2
((x, y)) we must have a < 0, and

thus (a, b) ∈ B.

|a− x| =
√

(a− x)2 ≤ d((a, b), (x, y)) < −x
2

3x

2
< a <

x

2
< 0

�

5.7: Show that if S is a bounded set in (Rn, d2), then S is contained in

[a, b]× [a, b]× · · · × [a, b]
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for some a, b ∈ R.

Solution: Since S is bounded, there exists a point x ∈ Rn and a non-negative number
k such that d(s, x) < k for all s ∈ S. Then S ⊆ Bk(x). Thus for y ∈ Bk(x) we
have, for each i = 1, . . . , n, |yi − xi| ≤ d2(y, x) < k. So −k + xi < yi < k + xi. Pick
b = max {k + xi} and a = min {−k + xi}. Then S ⊆ Bk(x) ⊆ [a, b]× [a, b]×· · ·× [a, b].
�

5.14: Show that for any x, y ∈ Rn,

d∞(x, y) ≤ d2(x, y) ≤ d1(x, y) ≤ nd∞(x, y).

Solution:

d∞(x,y) = max {|xi − yi|}

= max
{√

(xi − yi)2
}

≤ d2(x,y) =
√

(x1 − y1)2 + · · ·+ (xn − yn)2 since
√
a2 ≤

√
a2 + b2

≤
√

(x1 − y1)2 + · · ·+
√

(xn − yn)2 by the triangle inequality.

= d1(x,y) = |x1 − y1|+ · · · |xn − yn|
≤ max {|xi − yi|}+ · · ·+ max {|xi − yi|}
= nmax {|xi − yi|} = nd∞(x,y)

�

6.3: Prove that any finite subset of a metric space X is closed in X.

Solution: Let F = {f1, . . . , fn} be finite, and let x ∈ X\F . Define ε = 1
2

min {d(x, fi)}
and let y ∈ Bε(x). Now y 6= fi, since d(x, y) < ε < 2ε ≤ d(x, fi) for any i. Thus
y ∈ X \ F and so Bε(x) ⊆ X \ F which means X \ F is open and so F is closed. �

6.16: For a point x and a non-empty subset A of a metric space (X, d), define d(x,A) =
inf{d(x, a)|a ∈ A}.

(a) Prove that d(x,A) = 0 iff x ∈ A.
Solution: If d(x,A) = 0 then either x ∈ A ⊆ A or for every ε > 0 we have
Bε(X) ∩ A 6= ∅ which means x is a limit point of A, and thus is in A.

If x ∈ A then x ∈ A and so d(x,A) = 0, or for every ε > 0, we have Bε(x)∩A 6= ∅
and there is a aε ∈ A such that d(x, aε) < ε, so d(x,A) = inf{d(x, a)|a ∈ A} < ε
for all ε > 0 and thus is 0. �
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(b) Show that if y is another point in X, then d(x,A) ≤ d(x, y) + d(y, A).
Solution: Since d(x,A) = inf{d(x, a)|a ∈ A} we have d(x,A) ≤ d(x, a) for
all a ∈ A. Using the triangle inequality, we have d(x, a) ≤ d(x, y) + d(y, a).
Also inf{K + ai|i ∈ I} = K + inf{ai|i ∈ I} for any constant K. Therefore
inf{d(x, a)} ≤ d(x, y) + inf{d(y, a)}, which is what we are trying to show. �

(c) Prove that x 7→ d(x,A) gives a continuous map from X to R.
Solution: Let ε > 0 and pick δ = ε. Now d(x,A) ≤ d(x, y) + d(y, A), so
d(x,A) − d(y, A) ≤ d(x, y). Similarly, we have d(y, A) − d(x,A) ≤ d(x, y), thus
−d(x, y) ≤ d(x,A)− d(y, A) ≤ d(x, y).

So, if d(x, y) < δ, then |d(x,A)− d(y, A)| ≤ d(x, y) < δ = ε. �
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Assignment 3: Due February 24, 2017

6.18: Prove that a finite subset of a metric space has no limit points.
Solution: Assume that F = {f1, . . . , fn} has a limit point f . Let

ε =
1

2
min{d(f, fi)|i = 1, . . . , n}.

Then Bε(f) ∩Bε(fi) = ∅ for all i. Therefore f cannot be a limit point. �

6.23: For a subset A of a metric space X, prove:

(a) A◦ = A \ ∂A = A \ ∂A,
Solution: First we observe that for subsets A,B,C of X, that x ∈ A \ (B \C) if
and only if x ∈ A and x 6∈ B \ C if and only if (x ∈ A and x 6∈ B) or (x ∈ A and
x ∈ B and x ∈ C) if and only if x ∈ (A \B) ∪ (A ∩B ∩ C).

Then A \ ∂A = A \ (A \A◦) = (A \A)∪ (A∩A∩A◦) = ∅ ∪A◦ = A◦. So the first
equality is shown.

Similarly, A\∂A = A\ (A\A◦) = (A\A)∪ (A∩A∩A◦) = ∅∪A◦ = A◦. Therefore
we have the equalities indicated. �

(b) X \ A = X \ A◦,
Solution: x ∈ X \A◦ if and only if x 6∈ A◦ if and only if for every ε > 0 we have
Bε(x) ∩ (X \ A) 6= ∅ if and only if x ∈ X \ A. �

(c) ∂A = A ∩X \ A = ∂(X \ A),
Solution: First, x ∈ ∂A = A \ A◦ if and only if x ∈ A and x 6∈ A◦ if and only if
x ∈ A and for every ε > 0, Bε(x) ∩ (X \ A) 6= ∅ if and only if x ∈ A ∩X \ A.

Next, ∂(X \ A) = X \ A ∩X \ (X \ A) = X \ A ∩ A = ∂A. �

(d) ∂A is closed in X.
Solution: From above, ∂A is the intersection of two closed set and is therefore
closed. �

6.27: Prove that the metrics d(2), d(3) in Exercise 5.12 are topologically equivalent to d.
Solution: First, we will show that d(2) and d(3) are Lipschitz equivalent by proving

d(3)(x, y) =
d(x, y)

1 + d(x, y)
≤ min{1, d(x, y)} = d(2)(x, y) ≤ 2d(3)(x, y).

Now d(x, y) < 1+d(x, y), so d(3)(x, y) < 1, and d(x, y) ≤ d(x, y)+d(x, y)2 so d(3)(x, y) ≤
d(x, y). Thus d(3) ≤ d(2).
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Next, 1 + d(x, y) ≤ 2d(x, y) if d(x, y) ≥ 1, so 1 ≤ 2d(3) if d(x, y) ≥ 1. If d(x, y) < 1
then d(x, y)2 < d(x, y) and therefore d(x, y)+d(x, y)2 < 2d(x, y). Therefore d(2)(x, y) ≤
2d(3)(x, y) and we therefore have d(2) and d(3) are Lipschitz equivalent.

Second, we will show that d(2) is topologically equivalent to d which will complete the
prove (since topological equivalence is an equivalence relation).

Now if ε ≤ 1 then Bd
ε (x) = Bd(2)

ε (x). Let U be d-open. Then for every x ∈ U there

exists 1 > ε > 0 such that Bd
ε (x) = Bd(2)

ε (x) ⊆ U . We can impose the upper bound
since we have for r < s Br(x) ⊂ Bs(x). This means U is d(2)-open. The reverse is true
for the same reason. �

7.2: Give an example of two topologies T1, T2 on the same set such that neither contains
the other.
Solution: Let X = {0, 1} and T1 = {∅, {0}, X} and T2 = {∅, {1}, X}. Clearly, T1 6⊆ T2
and T2 6⊆ T1. �

7.3: Show that the intersection of two topologies on the same set X is also a topology on
X, but that their union may or may not be a topology. Does this first result extend
to the intersection of an arbitrary family of topologies on X?
Solution: We will show that the intersection of an arbitrary family of topologies on
X is a topology on X.

Let Ti be topologies on X for i ∈ I and let T =
⋂
i∈I Ti.

T1: Since ∅ and X are in each Ti, they are also in T .

T2: Let U, V ∈ T . Then U, V ∈ Ti for all i ∈ I. Since each Ti is a topology, U∩V ∈ Ti,
again for each i ∈ I. Thus U ∩ V ∈ T .

T3: Let Uj ∈ T for j ∈ J . Then Uj ∈ Ti for all j ∈ J and all i ∈ I Thus
⋃
j∈J Uj ∈ Ti

for all i ∈ I and therefore
⋃
j∈J Uj ∈ T.

To show that the union of two topologies does not have to be a topology, consider X =
{0, 1, 2}, T1 = {∅, {1}, X} and T2 = {∅, {2}, X}. Then T = T1 ∪ T2 = {∅, {1}, {2}, X}
which is not a topology since {1} ∪ {2} 6∈ T . �

7.4: Prove that we get a topology for N = {1, 2, 3, . . . } by taking the open sets to be ∅,N
and {1, 2, 3, . . . , n} for each n ∈ N.
Solution: Let T = {∅,N, {1}, {1, 2}, . . . }

T1: ∅,N are in T by definition of T .

T2: Let U, V ∈ T . Note: ∅ ∩ U = ∅ ∈ T and N ∩ U = U ∈ T . Let U = {1, . . . , n}
and V = {1, . . . ,m} and assume, without loss of generality, that n < m. Then
U ∩ V = U ∈ T .
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T3: Let Ui ∈ T where Ui = {1, . . . , ni} or possibly ∅ or N. If the empty set is one of
the Ui it can be ignored, and if N is a member of the collection, then the union is
N. Let W = {ni}i∈I . If W is not bounded above, then

⋃
i∈I Ui = N. Otherwise,

there is a largest value nk, and
⋃
i∈I Ui = Uk.

�

7.6: Let T be the collection of all subsets of R consisting of ∅,R together with all intervals
of the form (−∞, b). Show that T is a topology for R.
Solution:

T1: ∅,R are in T by definition of T .

T2: Let U, V ∈ T . Note: ∅ ∩ U = ∅ ∈ T and R ∩ U = U ∈ T . Let U = (−∞, n)
and V = (−∞,m) and assume, without loss of generality, that n < m. Then
U ∩ V = U ∈ T .

T3: Let Ui ∈ T where Ui = (−∞, ni) or possibly ∅ or R. If the empty set is one
of the Ui it can be ignored, and if R is a member of the collection, then the
union is R. Let W = {ni}i∈I . If W is not bounded above, then

⋃
i∈I Ui = R.

Otherwise, let w = supW . Clearly,
⋃
i∈I Ui ⊆ (−∞, w) since each Ui ⊆ (−∞, w).

Let x ∈ (−∞, w). Then x < w. If x 6∈ Ui for all i ∈ I then ni < x for all i ∈ I
and hence x is an upper bound for W , which cannot happen since w is the least
upper bound for W . Thus x ∈ Ui for some i ∈ I and is thus in the union. This
gives us equality, and so

⋃
i∈I Ui ∈ T .

�

8.1: Let f : X → Y be a map of topological spaces. Prove that f is continuous in the
following cases:

(a) X = Y and f is the identity map.

(b) f is a constant map.

(c) TX is discrete.

(d) TY is indiscrete.

Solution:1

(a) Let U ∈ T , then f−1(U) = U ∈ T . So f is continuous.

(b) Let y0 ∈ Y be a constant such that f(x) = y0 ∀x ∈ X. Let U ∈ TY . If
y0 ∈ U , then f−1(U) = f−1(y0) = X ∈ TX , otherwise f−1(U) = ∅ ∈ TX . So f is
continuous.

1This solution is by Ms. Huntemann. The notations in red are my corrections. I have reformatted some
of the solutions for legibility in the LATEX code.
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(c) Let U ∈ TY , then f−1(U) = V ⊆ X and since TX is the discrete topology, V ∈ TX .
So f is continuous.

(d) Since TY = {∅, Y }, we only have to test those two sets. f−1(∅) = ∅ ∈ TX and
f−1(Y ) = X ∈ TX . So f is continuous.

�

8.5: Prove that the set of all open intervals {(a, b) : a, b ∈ R, a < b} is a basis for the usual
topology on R.
Solution:2 Let (R, d) be a metric space with the usual metric. Then the only open
sets in the metric space are of the form

⋃
i∈I(ai, bi) with ai < bi and ai, bi ∈ R. (See

Exercise 5.13 which we proved in class.) These are also the sets in the topology. So all
sets in the topology are either of the form (a, b) or are the arbitrary union of sets of
this form. Therefore {(a, b) : a, b ∈ R, a < b} is a basis. �

9.5: Give either a proof of, or a counterexample to, each of the following:

(a) If f : X → Y is a continuous map of topological spaces and A ⊆ X is closed, then
f(A) ⊆ Y is closed.

Solution:3 This is not true. A counterexample would be the following: Let
Y = {0, 1} and TY = {∅, {0}, Y }, and X = R and TX = {∅, (−∞, 0), [0,∞), X}.
Let

f(x) =

{
0 if x ≥ 0
1 if x < 0

(0.0.1)

In this case, if A ⊆ X is closed, then A ∈ TX . But f([0,∞)) = 0 is not closed in
Y since Y \ {0} = {1} is not open in Y . �

(b) If A is open in a topological space X and B ⊆ X then A ∩B = A ∩B.

Solution:4 This is not true. A counterexample would be the following: Let
X = R with the usual topology, and let A = (0, 2) and B = [1, 3]. Then A is
open in X and B ⊆ X. But A ∩B = [1, 2) 6= [1, 2] = A ∩B. �

(c) If f : X → Y is a continuous map of topological spaces and B ⊆ Y then
f−1(B) = f−1(B).

2This solution is by Ms. Huntemann. The notations in red are my corrections. I have reformatted some
of the solutions for legibility in the LATEX code.

3This solution is by Ms. Huntemann. The notations in red are my corrections. I have reformatted some
of the solutions for legibility in the LATEX code.

4This solution is by Ms. Huntemann. The notations in red are my corrections. I have reformatted some
of the solutions for legibility in the LATEX code.
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Solution:5 This is not true. A counterexample would be the following: Let
X = Y = R with the usual topology and let

f(x) =


0 if x < 0
x if 0 ≤ x ≤ 1
1 if x > 1

(0.0.2)

which is a continuous function. Then let B = (0, 1), so that B = [0, 1], f−1(B) =
(0, 1), and f−1(B) = R. Therefore f−1(B) = [0, 1] 6= f−1(B) = R. �

9.7: Prove that a map f : X → Y of topological spaces is continuous iff f(A) ⊆ f(A).
Solution:6 First, let f be continuous and A ⊆ X. We know that f(A) ⊆ f(A),
therefore A ⊆ f−1(f(A)) ⊆ f−1(f(A)). Since f is continuous and f(A) is closed,
f−1(f(A)) is closed. Since A is the smallest closed set containing A, we have A ⊆
f−1(f(A)). Also,

f(f−1(f(A))) = f(A) ∩ f(X) = ⊆ since there may be points in Y not in f(X).f(A).

Therefore f(A) ⊆ f(A).

Now let f(A) ⊆ f(A) for all A ⊆ X. Let V ⊆ Y be closed, then f−1(V ) ⊆ X, so
f(f−1(V )) ⊆ f(f−1(V )) ⊆ V = V. Therefore, f−1(f(f−1(V ))) ⊆ f−1(f(f−1(V ))) ⊆
f−1(V ) ⊆ f−1(V ). We also know that f−1(V ) ⊆ f−1(f(f−1(V ))), therefore f−1(V ) =
f−1(V ) is closed and we have that f is continuous. �

9.11: Let A1, . . . , Am be subsets of a topological space X. Prove that the interior of
⋂m
i=1Ai

equals
⋂m
i=1 Åi.

Solution:7 Let x ∈
⋂m
i=1 Åi, then x ∈ Å1, x ∈ Å2, . . . , x ∈ Åm. Then for each

i ∈ {1, . . . ,m}, there exists a Ui ∈ T such that x ∈ U1 ⊆ A1, . . . , x ∈ Um ⊆ Am. Then
x ∈

⋂m
i=1 Ui ⊆

⋂m
i=1Ai and since all Ui ∈ T , we also have

⋂m
i=1 Ui ∈ T . Therefore

x ∈ ˚⋂m
i=1Ai and then

⋂m
i=1 Åi ⊆ ˚⋂m

i=1Ai.

Let x ∈ ˚⋂m
i=1Ai. Then there exists a U ∈ T such that x ∈ U ⊆

⋂m
i=1Ai. Therefore,

x ∈ U ⊆ A1, x ∈ U ⊆ A2, . . . , x ∈ U ⊆ Am. So x ∈ Å1, . . . , x ∈ Åm. Therefore,

x ∈
⋂m
i=1 Åi, and ˚⋂m

i=1Ai ⊆
⋂m
i=1 Åi. �

9.15: Let A be a subspace of a topological space X. Show that A is the disjoint union of Å
and ∂A. Deduce that if B is another subspace of X such that B ∩ A 6= ∅ then either

5This solution is by Ms. Huntemann. The notations in red are my corrections. I have reformatted some
of the solutions for legibility in the LATEX code.

6This solution is by Ms. Huntemann. The notations in red are my corrections. I have reformatted some
of the solutions for legibility in the LATEX code.

7This solution is by Ms. Huntemann. The notations in red are my corrections. I have reformatted some
of the solutions for legibility in the LATEX code.

15



B ∩ ∂A 6= ∅ or B ∩ Å 6= ∅.
Solution:8 We know that Å and ∂A are disjoint since ∂A = A \ Å.

Let a ∈ A, then either a ∈ Å or a ∈ A \ Å. Therefore A ⊆ Å ∪ ∂A.

Let a ∈ Å ∪ ∂A, then either a ∈ Å ⊆ A or a ∈ ∂A (the or is strict since Å and ∂A are
disjoint). If a ∈ ∂A, we know a 6∈ Å , and since ∂A = A \ Å, we have a ∈ A. Therefore
Å ∪ ∂A ⊆ A.

Therefore, A = ∂A ∪ Å.

Now let B ⊆ X with B∩A 6= ∅. Let x ∈ B∩A, then x ∈ B and x ∈ A ⊆ A = Å∪∂A.
Thus x ∈ B and either x ∈ Å or x ∈ ∂A, so either x ∈ B∩ Å or x ∈ B∩∂A. Therefore
either B ∩ Å 6= ∅ or B ∩ ∂A 6= ∅. �

10.5: Suppose that (A, TA) is a subspace of a space (X, T ) and that V ⊆ X is closed in X.
Prove that V ∩ A is closed in (A, TA).
Solution:9 Since V is closed, we know that X \ V ∈ T and by definition of the sub-
space topology A ∩ (X \ V ) ∈ TA. We also know that A ∩ (X \ V ) = A \ (V ∩ A), so
A \ (V ∩ A) ∈ TA. Therefore V ∩ A is closed in A. �

10.12: Suppose that S is the Seirpinski space of Example 7.7. Find the product topology
S × S.
Solution: S = {∅, {1}, {0, 1}}.

S × S ={∅, {(0, 0), (0, 1), (1, 0), (1, 1)},
{(1, 0), (1, 1)}, {(0, 1), (1, 1)},
{(1, 1)}, {(1, 1), (0, 1), (1, 0)}}

�

8This solution is by Ms. Huntemann. The notations in red are my corrections. I have reformatted some
of the solutions for legibility in the LATEX code.

9This solution is by Ms. Huntemann. The notations in red are my corrections. I have reformatted some
of the solutions for legibility in the LATEX code.
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Assignment 4: Due March 17, 2017

10.15: (a) Prove that if W is open in a topological product X × Y then pX(W ) is open in
X and pY (W ) is open in Y .
Solution: If W is open in the topological product X×Y , then W =

⋃
i∈I Ui×Vi

for Ui ∈ TX and Vi ∈ TY for all i ∈ I. Then

pX(W ) = pX

(⋃
i∈I

Ui × Vi

)
=
⋃
i∈I

pX(Ui × Vi) =
⋃
i∈I

Ui ∈ TX

pY (W ) = pY

(⋃
i∈I

Ui × Vi

)
=
⋃
i∈I

pY (Ui × Vi) =
⋃
i∈I

Vi ∈ TY

�

(b) Give an example of a closed set W ⊂ R×R whose projection p1(W ) on the x-axis
is not closed in R.
Solution: Let W = {(x, 1/x)|x > 0}. This set is closed. To see this, take
(a, b) 6∈ W , and let ε = 1

2
d((a, b),W ) where this distance is defined in Exercise

6.16. Then Bε((a, b)) ∩W = ∅, showing that R2 \W is open, thus W is closed.

Now pX(W ) = (0,∞) which is open but not closed. �

10.16: Suppose that X, Y are spaces and that A ⊆ X,B ⊆ Y . Prove that

(a) the interior of A×B is Å× B̊.
Solution: Clearly Å× B̊ is an open subset of A×B and is thus contained in the
interior.

Next, the interior of A × B is an open set in the product topology, and is thus
equal to

⋃
i∈I Ui × Vi for open sets Ui ⊆ X and Vi ⊆ Y . Also, each Ui ⊆ A and

Vi ⊆ B. This means that each Ui ⊆ Å and Vi ⊆ B̊, and so Ui × Vi ⊆ Å × B̊ for
all i ∈ I. This gives us the desired equality. �

(b) A×B = A×B.
Solution: Let (a, b) ∈ A×B and let a ∈ W ∈ TX . Then W × Y is open in the
product topology and so (W ×Y )∩ (A×B) 6= ∅. Then pX((W ×Y )∩ (A×B)) =
W ∩ A 6= ∅ so a ∈ A. Similarly for b ∈ B.

Next, let (a, b) ∈ A × B and let W be an open set containing (a, b). Then
pX(W∩(A×B)) = pX(W )∩A 6= ∅ since a ∈ A∩pX(W ). ThereforeW∩(A×B) 6= ∅
so (a, b) ∈ A×B. �
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(c) ∂(A×B) = ((∂A)×B) ∪ (A× (∂B)).
Solution: First we will show that (U×V )\(A×B) = ((U \A)×V )∪(U×(V \B)).

(U × V ) \ (A×B) = {(x, y) ∈ U × V |(x, y) 6∈ A×B}
= {(x, y) ∈ U × V |x 6∈ A or y 6∈ B}
= {(x, y)|(x ∈ U \ A and y ∈ V ) or (x ∈ U and y ∈ V \B)}
= ((U \ A)× V ) ∪ (U × (V \B))

Now

∂(A×B) = A×B \ (A×B)◦

= (A×B) \ (Å× B̊)

= ((A \ Å)×B) ∪ (A× (B \ B̊))

= ((∂A)×B) ∪ (A× (∂B))

�

11.4(c,d): Prove Proposition 11.7 (c,d)

(c): If f : X → Y is an injective continuous map of topological spaces and Y is Haus-
dorff, then so is X.
Solution: x 6= y ∈ X, then f(x) 6= f(y) ∈ Y . Since Y is Hausdorff there exist
disjoint open sets U 3 f(x) and V 3 f(y). Then f−1(U) is a open set containing
x and f−1(V ) is an open set containing y (since f is continuous), and these sets
are disjoint (f−1(U) ∩ f−1(V ) = f−1(U ∩ V ) = f−1(∅)). �

(d): If X and Y are homeomorphic then X is Hausdorff iff Y is Hausdorrf. In other
words, Hausdorffness is a topological property.
Solution: Let f : X → Y be a homeomorphism (bijective and f and f−1 are
continuous. Apply part (c) as follows: if Y is Hausdorff use f . If X is Hausdorff
use f−1. �

11.5: Suppose that f : X → Y is a continuous map of a topological space X to a Hausdorff
space Y . Prove that the graph Gf of f is a closed subset of the topological product
X × Y .
Solution: We will show that (X × Y ) \Gf is open. Let (a, b) ∈ (X × Y ) \Gf . Then
f(a) 6= b, thus, since Y is Hausdorff, there exists disjoint open sets U, V ∈ TY such that
b ∈ U and f(a) ∈ V . Let W = f−1(U). This is a closed set in X since f is continuous.
Therefore X \W is open in X, and we have (X \W )× U is open in X × Y , and it is
contained in (X × Y ) \Gf . This shows that (X × Y ) \Gf is open. �
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11.6: (a) Prove that if x is any point in a Hausdorff space X, then the intersection of all
open subsets of X containing x is {x}.
Solution: Assume that there is a distinct element y in the intersection. Since X
is Hausdorff there exist disjoint open sets U 3 x and V 3 y. This is a contradic-
tion. �

(b) Give an example to show that the conclusion of (a) does not imply that X is
Hausdorff. [Hint: Think about the co-finite topology on an infinite set.]
Solution: Let X = Z have the cofinite topology and let V be the intersection of
all open sets containing a point x ∈ X. Now for each y 6= x in X, Uy = X \{y} is
an open set containing x. Now {x} ⊆ V ⊆

⋂
y 6=x Uy = X \

⋃
y 6=x{y} = {x}. But

X is not Hausdorff (Example 11.6). �

11.8: Suppose that X, Y are spaces, with Y Hausdorff, and that A is a subspace of X. Prove
that if f, g : A→ Y are continuous and f(a) = g(a) for all a ∈ A then f = g.
Solution: Assume that there is an x ∈ A \A such that f(x) 6= g(x). Since Y is Haus-
dorff there exists disjoint open sets U 3 f(x) and V 3 g(X). Now f−1(U) ∩ g−1(V )
is an open set since f and g are continuous, and it contains x which is in A \ A so
(f−1(U) ∩ g−1(V )) ∩ A 6= ∅. Thus there is a y 6= x in this set and f(y) ∈ U and
g(y) ∈ V . But since y ∈ A we have f(y) = g(y) which contradicts U and V being
disjoint. �
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