BISHOP'S UNIVERSITY

MATH 431: TEST WINTER 2017

- Prepare neat solutions. Briefly justify your work, that is, make your reasoning clear.
- This test is 80 minutes in length. There are 37 points in total.
- 1. (5 points) Let $f: \mathbb{R} \to \mathbb{R}^2$ be defined by f(x) = (x, 1 x). Describe the set $f^{-1}(D)$ where $D = \{(x, y) | x^2 y \le 1\}$.

Solution: We require that $x^2 - y \le 1$, so $x^2 - (1 - x) = x^2 + x - 1 \le 1$ which means we need to solve the inequality $x^2 + x - 2 = (x - 1)(x + 2) \le 0$. Since the left side represents a upward opening parabola, the inequality is satisfied for the x values between the two roots. Thus $f^{-1}(D) = [-2, 1]$.

2. (5 points) Show that $d(x,y) = |x^3 - y^3|$ defines a metric on \mathbb{R} .

Solution:

M1: $d(x,y) \ge 0$ by definition, and if d(x,y) = 0 then $absx^3 - y^3 = 0$. The only way for this to happen is for $x^3 = y^3$, and thus x = y.

M2:
$$d(x,y) = |x^3 - y^3| = |-(y^3 - x^3)| = |y^3 - x^3| = d(y,x)$$
.

M3;
$$d(x,y) = |x^3 - y^3| = |x^3 - z^3 + z^3 - y^3| \le |x^3 - z^3| + |z^3 - y^3| = d(x,z) + d(z,y)$$
.

- 3. Suppose that (A, \mathcal{T}_A) is a subspace of a space (X, \mathcal{T}) , and let $W \subseteq A$.
 - (a) (5 points) Prove that if W is closed in A and A is closed in X, then W is closed in X.

Solution: We will show that the closure of W in X is W. Suppose x is a point of closure of W in X. Since $W \subseteq A$, x is also a point of closure of A in X. Since A is closed in X, we must have that $x \in A$. Since W is closed in A, we must have that $x \in W$. Thus $\overline{W} \subseteq W$ and since $W \subseteq \overline{W}$ by definition, we have that W is closed in X.

(b) (2 points) Give an example of a proper subset $W \subset A$ where W is closed in A but W is not closed in X.

Solution: $X = \mathbb{R}, A = (0, 2), W = (0, 1].$

4. (5 points) Suppose that A is a subset of a topological space X. Prove that the boundary ∂A is closed in X.

Solution: $\partial A = \overline{X \setminus A} \cap \overline{A}$, so $X \setminus \partial A = (X \setminus (\overline{X \setminus A})) \cup (X \setminus \overline{A})$. Both $X \setminus (\overline{X \setminus A})$ and $X \setminus \overline{A}$ are open by definition, so their union is open. Thus ∂A is closed in X.

5. (5 points) Show that the intersection of two topologies on the same set X is also a topology on X, but that their union may or may not be a topology.

Solution: Let $\mathcal{T}_1, \mathcal{T}_2$ be two topologies on X, and define $\mathcal{T} = \mathcal{T}_1 \cap \mathcal{T}_2$.

- T1: Since $\emptyset, X \in \mathcal{T}_1, \mathcal{T}_2$ they must be in the intersection, \mathcal{T} .
- T2: Let $A, B \in \mathcal{T}$, then $A, B \in \mathcal{T}_1, \mathcal{T}_2$. Since these are topologies, we have $A \cap B \in \mathcal{T}_1, \mathcal{T}_2$, and is thus in \mathcal{T} .
- T3: Let $A_i \in \mathcal{T}$ for $i \in I$. Then $A_i \in \mathcal{T}_1, \mathcal{T}_2$. Since these are topologies, we have $\bigcup_{i \in I} A_i \in \mathcal{T}_1, \mathcal{T}_2$, and is thus in \mathcal{T} .

To show that the union of topologies may not be a topology, consider the following: $X = \{0, 1, 2\}$, $\mathcal{T}_1 = \{\emptyset, \{0\}, X\}$ and $\mathcal{T}_1 = \{\emptyset, \{1\}, X\}$. Then $\mathcal{T}_1 \cup \mathcal{T}_2 = \{\emptyset, \{0\}, \{1\}, X\}$. This is not a topology since $\{0\} \cup \{1\} = \{0, 1\}$ is not in the union.

6. (5 points) Prove that any subspace of a Hausdorff space is Hausdorff.

Solution: Let (X, \mathcal{T}) be Hausdorff and $A \subseteq X$. Let $x \neq Y \in A \subseteq X$. Then there exist $U_x, U_y \in \mathcal{T}$ with $x \in U_x, y \in U_y$, and $U_x \cap U_y = \emptyset$ since X is Hausdorff. Now $A \cap U_x, A \cap U_y \in \mathcal{T}_A$ with $x \in A \cap U_x$ and $y \in A \cap U_y$. We just have to show the intersection is empty. $(a \cap U_x) \cap (A \cap U_y) = A \cap (U_x \cap U_y) = A \cap \emptyset = \emptyset$. Thus (A, \mathcal{T}_A) is Hausdorff.

7. (5 points) Prove or disprove: If $f: X \to Y$ is a continuous map of topological spaces and $A \subseteq X$ is closed, then $f(A) \subseteq Y$ is closed.

Solution: The statement is not true. For example: Let $X = \mathbb{R}^2$ and $A = \{(x, \frac{1}{x}) | x > 0\}$. A is closed in \mathbb{R}^2 . Let $f: X \to \mathbb{R}$ be the projection onto the first coordinate. Projection maps are continuous. Then $f(A) = (0, \infty)$ which is open in \mathbb{R} .